Existence of Global Weak Solutions to a Hybrid Vlasov-mhd Model for Magnetized Plasmas

نویسنده

  • BIN CHENG
چکیده

We prove the global-in-time existence of large-data finite-energy weak solutions to an incompressible hybrid Vlasov-magnetohydrodynamic model in three space dimensions. The model couples three essential ingredients of magnetized plasmas: a transport equation for the probability density function, which models energetic rarefied particles of one species; the incompressible Navier–Stokes system for the bulk fluid; and a parabolic evolution equation, involving magnetic diffusivity, for the magnetic field. The physical derivation of our model is given. It is also shown that the weak solution, whose existence is established, has nonincreasing total energy, and that it satisfies a number of physically relevant properties, including conservation of the total momentum, conservation of the total mass, and nonnegativity of the probability density function for the energetic particles. The proof is based on a one-level approximation scheme, which is carefully devised to avoid increase of the total energy for the sequence of approximating solutions, in conjunction with a weak compactness argument for the sequence of approximating solutions. The key technical challenges in the analysis of the mathematical model are the nondissipative nature of the Vlasov-type particle equation and passage to the weak limits in the multilinear coupling terms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak turbulence theory and simulation of the gyro-water-bag model.

The thermal confinement time of a magnetized fusion plasma is essentially determined by turbulent heat conduction across the equilibrium magnetic field. To achieve the study of turbulent thermal diffusivities, Vlasov gyrokinetic description of the magnetically confined plasmas is now commonly adopted, and offers the advantage over fluid models (MHD, gyrofluid) to take into account nonlinear res...

متن کامل

Global weak solutions to the Nordström-Vlasov system

The Nordström-Vlasov system is a Lorentz invariant model for a selfgravitating collisionless gas. We establish suitable a-priori-bounds on the solutions of this system, which together with energy estimates and the smoothing effect of “momentum averaging” yield the existence of global weak solutions to the corresponding initial value problem. In the process we improve the continuation criterion ...

متن کامل

On the Lagrangian structure of transport equations: the Vlasov-Poisson system

The Vlasov-Poisson system is a classical model in physics used to describe the evolution of particles under their self-consistent electric or gravitational field. The existence of classical solutions is limited to dimensions d ≤ 3 under strong assumptions on the initial data, while weak solutions are known to exist under milder conditions. However, in the setting of weak solutions it is unclear...

متن کامل

Global Weak Solutions of the Relativistic Vlasov-klein-gordon System

We consider an ensemble of classical particles coupled to a KleinGordon field. For the resulting nonlinear system of partial differential equations, which we call the relativistic Vlasov-Klein-Gordon system, we prove the existence of global weak solutions for initial data satisfying a size restriction. The latter becomes necessary since the energy of the system is indefinite, and only for restr...

متن کامل

Global existence of weak and classical solutions for the Navier–Stokes–Vlasov–Fokker–Planck equations

a r t i c l e i n f o a b s t r a c t We consider a system coupling the incompressible Navier–Stokes equations to the Vlasov–Fokker–Planck equation. The coupling arises from a drag force exerted by each other. We establish existence of global weak solutions for the system in two and three dimensions. Furthermore, we obtain the existence and uniqueness result of global smooth solutions for dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016